Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Circ Res ; 134(6): 748-769, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484026

RESUMO

Mammalian physiology and cellular function are subject to significant oscillations over the course of every 24-hour day. It is likely that these daily rhythms will affect function as well as mechanisms of disease in the central nervous system. In this review, we attempt to survey and synthesize emerging studies that investigate how circadian biology may influence the neurovascular unit. We examine how circadian clocks may operate in neural, glial, and vascular compartments, review how circadian mechanisms regulate cell-cell signaling, assess interactions with aging and vascular comorbidities, and finally ask whether and how circadian effects and disruptions in rhythms may influence the risk and progression of pathophysiology in cerebrovascular disease. Overcoming identified challenges and leveraging opportunities for future research might support the development of novel circadian-based treatments for stroke.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Animais , Envelhecimento/fisiologia , Mamíferos
2.
J Biol Rhythms ; 37(1): 53-77, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35023384

RESUMO

Circadian rhythms are endogenously generated physiological and molecular rhythms with a cycle length of about 24 h. Bioluminescent reporters have been exceptionally useful for studying circadian rhythms in numerous species. Here, we report development of a reporter mouse generated by modification of a widely expressed and highly rhythmic gene encoding D-site albumin promoter binding protein (Dbp). In this line of mice, firefly luciferase is expressed from the Dbp locus in a Cre recombinase-dependent manner, allowing assessment of bioluminescence rhythms in specific cellular populations. A mouse line in which luciferase expression was Cre-independent was also generated. The Dbp reporter alleles do not alter Dbp gene expression rhythms in liver or circadian locomotor activity rhythms. In vivo and ex vivo studies show the utility of the reporter alleles for monitoring rhythmicity. Our studies reveal cell-type-specific characteristics of rhythms among neuronal populations within the suprachiasmatic nuclei ex vivo. In vivo studies show Dbp-driven bioluminescence rhythms in the liver of Albumin-Cre;DbpKI/+ "liver reporter" mice. After a shift of the lighting schedule, locomotor activity achieved the proper phase relationship with the new lighting cycle more rapidly than hepatic bioluminescence did. As previously shown, restricting food access to the daytime altered the phase of hepatic rhythmicity. Our model allowed assessment of the rate of recovery from misalignment once animals were provided with food ad libitum. These studies confirm the previously demonstrated circadian misalignment following environmental perturbations and reveal the utility of this model for minimally invasive, longitudinal monitoring of rhythmicity from specific mouse tissues.


Assuntos
Ritmo Circadiano , Núcleo Supraquiasmático , Albuminas/genética , Albuminas/metabolismo , Animais , Ritmo Circadiano/genética , Genes Reporter , Luciferases/genética , Luciferases/metabolismo , Camundongos , Fotoperíodo , Núcleo Supraquiasmático/metabolismo
3.
J Biol Rhythms ; 37(1): 78-93, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34873943

RESUMO

Circadian rhythms are driven by daily oscillations of gene expression. An important tool for studying cellular and tissue circadian rhythms is the use of a gene reporter, such as bioluminescence from the reporter gene luciferase controlled by a rhythmically expressed gene of interest. Here we describe methods that allow measurement of circadian bioluminescence from a freely moving mouse housed in a standard cage. Using a LumiCycle In Vivo (Actimetrics), we determined conditions that allow detection of circadian rhythms of bioluminescence from the PER2 reporter, PER2::LUC, in freely behaving mice. The LumiCycle In Vivo applies a background subtraction that corrects for effects of room temperature on photomultiplier tube (PMT) output. We tested delivery of d-luciferin via a subcutaneous minipump and in the drinking water. We demonstrate spikes in bioluminescence associated with drinking bouts. Further, we demonstrate that a synthetic luciferase substrate, CycLuc1, can support circadian rhythms of bioluminescence, even when delivered at a lower concentration than d-luciferin, and can support longer-term studies. A small difference in phase of the PER2::LUC bioluminescence rhythms, with females phase leading males, can be detected with this technique. We share our analysis scripts and suggestions for further improvements in this method. This approach will be straightforward to apply to mice with tissue-specific reporters, allowing insights into responses of specific peripheral clocks to perturbations such as environmental or pharmacological manipulations.


Assuntos
Ritmo Circadiano , Proteínas Circadianas Period , Animais , Ritmo Circadiano/fisiologia , Feminino , Luciferases/genética , Luciferases/metabolismo , Masculino , Camundongos , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Núcleo Supraquiasmático/fisiologia
4.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34556572

RESUMO

Light provides the primary signal for entraining circadian rhythms to the day/night cycle. In addition to rods and cones, the retina contains a small population of photosensitive retinal ganglion cells (pRGCs) expressing the photopigment melanopsin (OPN4). Concerns have been raised that exposure to dim artificial lighting in the evening (DLE) may perturb circadian rhythms and sleep patterns, and OPN4 is presumed to mediate these effects. Here, we examine the effects of 4-h, 20-lux DLE on circadian physiology and behavior in mice and the role of OPN4 in these responses. We show that 2 wk of DLE induces a phase delay of ∼2 to 3 h in mice, comparable to that reported in humans. DLE-induced phase shifts are unaffected in Opn4-/- mice, indicating that rods and cones are capable of driving these responses in the absence of melanopsin. DLE delays molecular clock rhythms in the heart, liver, adrenal gland, and dorsal hippocampus. It also reverses short-term recognition memory performance, which is associated with changes in preceding sleep history. In addition, DLE modifies patterns of hypothalamic and cortical cFos signals, a molecular correlate of recent neuronal activity. Together, our data show that DLE causes coordinated realignment of circadian rhythms, sleep patterns, and short-term memory process in mice. These effects are particularly relevant as DLE conditions-due to artificial light exposure-are experienced by the majority of the populace on a daily basis.


Assuntos
Ritmo Circadiano , Luz , Memória de Curto Prazo/fisiologia , Células Ganglionares da Retina/fisiologia , Opsinas de Bastonetes/fisiologia , Sono/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Ganglionares da Retina/citologia
6.
7.
PLoS One ; 15(7): e0236315, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32706791

RESUMO

The natural product nobiletin is a small molecule, widely studied with regard to its therapeutic effects, including in cancer cell lines and tumors. Recently, nobiletin has also been shown to affect circadian rhythms via their enhancement, resulting in protection against metabolic syndrome. We hypothesized that nobiletin's anti-oncogenic effects, such as prevention of cell migration and formation of anchorage independent colonies, are correspondingly accompanied by modulation of circadian rhythms. Concurrently, we wished to determine whether the circadian and anti-oncogenic effects of nobiletin differed across cancer cell lines. In this study, we assessed nobiletin's circadian and therapeutic characteristics to ascertain whether these effects depend on cell line, which here also varied in terms of baseline circadian rhythmicity. Three cell culture models where nobiletin's effects on cell proliferation and migration have been studied previously were evaluated: U2OS (bone osteosarcoma), which possesses robust circadian rhythms; MCF7 (breast adenocarcinoma), which has weak circadian rhythms; and MDA-MB-231 (breast adenocarcinoma), which is arrhythmic. We found that circadian, migration, and proliferative effects following nobiletin treatment were subtle in the U2OS and MCF7 cells. On the other hand, changes were clear in MDA-MB-231s, where nobiletin rescued rhythmicity and substantially reduced oncogenic features, specifically two-dimensional cell motility and anchorage-independent growth. Based on these results and those previously described, we posit that the effects of nobiletin are indeed cell-type dependent, and that a positive correlation may exist between nobiletin's circadian and therapeutic effects.


Assuntos
Antineoplásicos Fitogênicos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Flavonas , Adenocarcinoma/tratamento farmacológico , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Flavonas/farmacologia , Flavonas/uso terapêutico , Humanos , Osteossarcoma/tratamento farmacológico
8.
J Pineal Res ; 69(1): e12654, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32243642

RESUMO

Disturbing the circadian regulation of physiology by disruption of the rhythmic environment is associated with adverse health outcomes but the underlying mechanisms are unknown. Here, the response of central and peripheral circadian clocks to an advance or delay of the light-dark cycle was determined in mice. This identified transient damping of peripheral clocks as a consequence of an advanced light-dark cycle. Similar depression of peripheral rhythm amplitude was observed in mice exposed to repeated phase shifts. To assess the metabolic consequences of such peripheral amplitude depression in isolation, temporally chimeric mice lacking a functional central clock (Vgat-Cre+ Bmal1fl/fl ) were housed in the absence of environmental rhythmicity. In vivo PER2::LUC bioluminescence imaging of anesthetized and freely moving mice revealed that this resulted in a state of peripheral amplitude depression, similar in severity to that observed transiently following an advance of the light-dark cycle. Surprisingly, our mice did not show alterations in body mass or glucose tolerance in males or females on regular or high-fat diets. Overall, our results identify transient damping of peripheral rhythm amplitude as a consequence of exposure to an advanced light-dark cycle but chronic damping of peripheral clocks in isolation is insufficient to induce adverse metabolic outcomes in mice.


Assuntos
Comportamento Animal , Relógios Biológicos , Ritmo Circadiano , Intolerância à Glucose , Obesidade , Animais , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Intolerância à Glucose/fisiopatologia , Camundongos , Camundongos Transgênicos , Obesidade/genética , Obesidade/metabolismo , Obesidade/fisiopatologia
9.
J Biol Rhythms ; 35(2): 214-222, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31986956

RESUMO

Circadian rhythms are daily oscillations in physiology and behavior that can be assessed by recording body temperature, locomotor activity, or bioluminescent reporters, among other measures. These different types of data can vary greatly in waveform, noise characteristics, typical sampling rate, and length of recording. We developed 2 Shiny apps for exploration of these data, enabling visualization and analysis of circadian parameters such as period and phase. Methods include the discrete wavelet transform, sine fitting, the Lomb-Scargle periodogram, autocorrelation, and maximum entropy spectral analysis, giving a sense of how well each method works on each type of data. The apps also provide educational overviews and guidance for these methods, supporting the training of those new to this type of analysis. CIRCADA-E (Circadian App for Data Analysis-Experimental Time Series) allows users to explore a large curated experimental data set with mouse body temperature, locomotor activity, and PER2::LUC rhythms recorded from multiple tissues. CIRCADA-S (Circadian App for Data Analysis-Synthetic Time Series) generates and analyzes time series with user-specified parameters, thereby demonstrating how the accuracy of period and phase estimation depends on the type and level of noise, sampling rate, length of recording, and method. We demonstrate the potential uses of the apps through 2 in silico case studies.


Assuntos
Relógios Biológicos , Ritmo Circadiano , Conceitos Matemáticos , Software , Animais , Relógios Circadianos/fisiologia , Camundongos , Atividade Motora , Proteínas Circadianas Period , Núcleo Supraquiasmático , Análise de Ondaletas
10.
Eur J Neurosci ; 51(12): 2343-2354, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-30269396

RESUMO

A single phase advance of the light:dark (LD) cycle can temporarily disrupt synchrony of neural circadian rhythms within the suprachiasmatic nucleus (SCN) and between the SCN and peripheral tissues. Compounding this, modern life can involve repeated disruptive light conditions. To model chronic disruption to the circadian system, we exposed male mice to more than a month of a 20-hr light cycle (LD10:10), which mice typically cannot entrain to. Control animals were housed under LD12:12. We measured locomotor activity and body temperature rhythms in vivo, and rhythms of PER2::LUC bioluminescence in SCN and peripheral tissues ex vivo. Unexpectedly, we discovered strong effects of the time of dissection on circadian phase of PER2::LUC bioluminescent rhythms, which varied across tissues. White adipose tissue was strongly reset by dissection, while thymus phase appeared independent of dissection timing. Prior light exposure impacted the SCN, resulting in strong resetting of SCN phase by dissection for mice housed under LD10:10, and weak phase shifts by time of dissection in SCN from control LD12:12 mice. These findings suggest that exposure to circadian disruption may desynchronize SCN neurons, increasing network sensitivity to perturbations. We propose that tissues with a weakened circadian network, such as the SCN under disruptive light conditions, or with little to no coupling, for example, some peripheral tissues, will show increased resetting effects. In particular, exposure to light at inconsistent circadian times on a recurring weekly basis disrupts circadian rhythms and alters sensitivity of the SCN neural pacemaker to dissection time.


Assuntos
Relógios Circadianos , Animais , Ritmo Circadiano , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Núcleo Supraquiasmático/metabolismo
11.
Yale J Biol Med ; 92(2): 259-270, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31249487

RESUMO

Circadian disruption has been linked to markers for poor health outcomes in humans and animal models. What is it about circadian disruption that is problematic? One hypothesis is that phase resetting of the circadian system, which occurs in response to changes in environmental timing cues, leads to internal desynchrony within the organism. Internal desynchrony is understood as acute changes in phase relationships between biological rhythms from different cell groups, tissues, or organs within the body. Do we have strong evidence for internal desynchrony associated with or caused by circadian clock resetting? Here we review the literature, highlighting several key studies from measures of gene expression in laboratory rodents. We conclude that current evidence offers strong support for the premise that some protocols for light-induced resetting are associated with internal desynchrony. It is important to continue research to test whether internal desynchrony is necessary and/or sufficient for negative health impact of circadian disruption.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Periodicidade , Fotoperíodo , Animais , Relógios Circadianos/genética , Relógios Circadianos/efeitos da radiação , Ritmo Circadiano/genética , Ritmo Circadiano/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Luz , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/fisiopatologia , Núcleo Supraquiasmático/efeitos da radiação
12.
Neurobiol Aging ; 66: 75-84, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29547750

RESUMO

Robust physiological circadian rhythms form an integral part of well-being. The aging process has been found to negatively impact systems that drive circadian physiology, typically manifesting as symptoms associated with abnormal/disrupted sleeping patterns. Here, we investigated the age-related decline in light-driven circadian entrainment in male C57BL/6J mice. We compared light-driven resetting of circadian behavioral activity in young (1-2 months) and old (14-18 months) mice and explored alterations in the glutamatergic pathway at the level of the circadian pacemaker, the suprachiasmatic nucleus (SCN). Aged animals showed a significant reduction in sensitivity to behavioral phase resetting by light. We show that this change was through alterations in N-Methyl-D-aspartate (NMDA) signaling at the SCN, where NMDA, a glutamatergic agonist, was less potent in inducing clock resetting. Finally, we show that this shift in NMDA sensitivity was through the reduced SCN expression of this receptor's NR2B subunit. Only in young animals did an NR2B antagonist attenuate behavioral resetting. These results can help target treatments that aim to improve both physiological and behavioral circadian entrainment in aged populations.


Assuntos
Envelhecimento/fisiologia , Envelhecimento/psicologia , Transtornos Cronobiológicos/etiologia , Transtornos Cronobiológicos/genética , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Olho/fisiopatologia , Luz , N-Metilaspartato/fisiologia , Transdução de Sinais/fisiologia , Núcleo Supraquiasmático/fisiopatologia , Vias Visuais/fisiopatologia , Animais , Masculino , Camundongos Endogâmicos C57BL , N-Metilaspartato/metabolismo , Núcleo Supraquiasmático/metabolismo
13.
Curr Protoc Mouse Biol ; 5(4): 311-329, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26629774

RESUMO

Circadian rhythms regulate many aspects of behavior and physiological processes, and, through external signals, help an organism entrain to its environment. These rhythms are driven by circadian clocks in many cells and tissues within our bodies, and are synchronized by a central pacemaker in the brain, the suprachiasmatic nucleus. Peripheral oscillators include the liver, whose circadian clock controls persistent daily rhythms in gene expression and in liver-specific functions such as metabolic homeostasis and drug metabolism. Chronic circadian clock disruption, as in rotating shiftwork, has been linked to disorders including obesity, diabetes, and cardiovascular disease. The mouse primary hepatocyte culture model allows the examination of circadian rhythms in these cells. This article describes a transgenic mouse model that uses a bioluminescent reporter to examine the circadian properties of a core clock gene Period2. Hepatocytes are isolated using a modified collagenase perfusion technique and cultured in a sandwich configuration, then sealed in a buffered medium containing luciferin for detection of whole-culture or single-cell bioluminescence. After synchronization by a medium change, cultures demonstrate coherent circadian period and phase measures of bioluminescence from the PERIOD2::LUCIFERASE reporter.


Assuntos
Ritmo Circadiano/fisiologia , Hepatócitos/citologia , Animais , Relógios Circadianos/fisiologia , Camundongos , Modelos Animais
14.
PLoS One ; 10(10): e0140678, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26469939

RESUMO

Fatigue is a disabling symptom in patients with multiple sclerosis and Parkinson's Disease, and is also common in patients with traumatic brain injury, cancer, and inflammatory disorders. Little is known about the neurobiology of fatigue, in part due to the lack of an approach to induce fatigue in laboratory animals. Fatigue is a common response to systemic challenge by pathogens, a response in part mediated through action of the pro-inflammatory cytokine interleukin-1 beta (IL-1ß). We investigated the behavioral responses of mice to IL-1ß. Female C57Bl/6J mice of 3 ages were administered IL-1ß at various doses i.p. Interleukin-1ß reduced locomotor activity, and sensitivity increased with age. Further experiments were conducted with middle-aged females. Centrally administered IL-1ß dose-dependently reduced locomotor activity. Using doses of IL-1ß that caused suppression of locomotor activity, we measured minimal signs of sickness, such as hyperthermia, pain or anhedonia (as measured with abdominal temperature probes, pre-treatment with the analgesic buprenorphine and through sucrose preference, respectively), all of which are responses commonly reported with higher doses. We found that middle-aged orexin-/- mice showed equivalent effects of IL-1ß on locomotor activity as seen in wild-type controls, suggesting that orexins are not necessary for IL-1ß -induced reductions in wheel-running. Given that the availability and success of therapeutic treatments for fatigue is currently limited, we examined the effectiveness of two potential clinical treatments, modafinil and methylphenidate. We found that these treatments were variably successful in restoring locomotor activity after IL-1ß administration. This provides one step toward development of a satisfactory animal model of the multidimensional experience of fatigue, a model that could allow us to determine possible pathways through which inflammation induces fatigue, and could lead to novel treatments for reversal of fatigue.


Assuntos
Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Fadiga/induzido quimicamente , Interleucina-1beta/farmacologia , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Animais , Animais de Laboratório , Regulação para Baixo/efeitos dos fármacos , Fadiga/patologia , Feminino , Infusões Intraventriculares , Interleucina-1beta/administração & dosagem , Camundongos , Condicionamento Físico Animal
15.
Acad Pediatr ; 15(3 Suppl): S1-6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25906953

RESUMO

The Children's Health Insurance Program (CHIP) Reauthorization Act (CHIPRA) reauthorized CHIP through federal fiscal year 2019 and, together with provisions in the Affordable Care Act, federal funding for the program was extended through federal fiscal year 2015. Congressional action is required or federal funding for the program will end in September 2015. This supplement to Academic Pediatrics is intended to inform discussions about CHIP's future. Most of the new research presented comes from a large evaluation of CHIP mandated by Congress in the CHIPRA. Since CHIP started in 1997, millions of lower-income children have secured health insurance coverage and needed care, reducing the financial burdens and stress on their families. States made substantial progress in simplifying enrollment and retention. When implemented optimally, Express Lane Eligibility has the potential to help cover more of the millions of eligible children who remain uninsured. Children move frequently between Medicaid and CHIP, and many experienced a gap in coverage with this transition. CHIP enrollees had good access to care. For nearly every health care access, use, care, and cost measure examined, CHIP enrollees fared better than uninsured children. Access in CHIP was similar to private coverage for most measures, but financial burdens were substantially lower and access to weekend and nighttime care was not as good. The Affordable Care Act coverage options have the potential to reduce uninsured rates among children, but complex transition issues must first be resolved to ensure families have access to affordable coverage, leading many stakeholders to recommend funding for CHIP be continued.


Assuntos
Children's Health Insurance Program/legislação & jurisprudência , Acesso aos Serviços de Saúde , Cobertura do Seguro/estatística & dados numéricos , Medicaid , Patient Protection and Affordable Care Act/legislação & jurisprudência , Adolescente , Plantão Médico , Criança , Saúde da Criança , Serviços de Saúde da Criança , Pré-Escolar , Children's Health Insurance Program/economia , Definição da Elegibilidade , Família , Governo Federal , Feminino , Financiamento Governamental , Humanos , Lactente , Recém-Nascido , Masculino , Pessoas sem Cobertura de Seguro de Saúde , Aceitação pelo Paciente de Cuidados de Saúde , Patient Protection and Affordable Care Act/economia , Pobreza , Avaliação de Programas e Projetos de Saúde , População Rural , Estados Unidos , População Urbana
16.
PLoS One ; 9(2): e87573, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24498336

RESUMO

BACKGROUND: Hepatocytes, the parenchymal cells of the liver, express core clock genes, such as Period2 and Cryptochrome2, which are involved in the transcriptional/translational feedback loop of the circadian clock. Whether or not the liver is capable of sustaining rhythms independent of a central pacemaker is controversial. Whether and how circadian information may be shared among cells in the liver in order to sustain oscillations is currently unknown. RESULTS: In this study we isolated primary hepatocytes from transgenic Per2(Luc) mice and used bioluminescence as a read-out of the state of the circadian clock. Hepatocytes cultured in a collagen gel sandwich configuration exhibited persistent circadian rhythms for several weeks. The amplitude of the rhythms damped, but medium changes consistently reset the phase and amplitude of the cultures. Cry2(-/-) Per2(Luc) cells oscillated robustly and expressed a longer period. Co-culturing with wildtype cells did not significantly shorten the period, indicating that coupling among hepatocytes is insufficient to synchronize cells with significantly differing periods. However, spatial patterns revealed by cellular imaging of wildtype cultures provided evidence of weak local coupling among the hepatocytes. CONCLUSIONS: Our results with primary hepatocyte cultures demonstrate that cultured hepatocytes are weakly coupled. While this coupling is not sufficient to sustain global synchrony, it does increase local synchrony, which may stabilize the circadian rhythms of peripheral oscillators, such as the liver, against noise in the entraining signals.


Assuntos
Ritmo Circadiano , Hepatócitos/metabolismo , Luciferases/metabolismo , Proteínas Circadianas Period/metabolismo , Algoritmos , Animais , Técnicas de Cocultura , Simulação por Computador , Criptocromos/genética , Criptocromos/metabolismo , Hepatócitos/citologia , Luciferases/genética , Medições Luminescentes/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia de Contraste de Fase , Modelos Biológicos , Mutação , Oscilometria/métodos , Proteínas Circadianas Period/genética , Cultura Primária de Células , Fatores de Tempo
18.
Prog Neurobiol ; 99(2): 93-105, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22841649

RESUMO

Fatigue is a symptom associated with many disorders, is especially common in women and in older adults, and can have a huge negative influence on quality of life. Although most past research on fatigue uses human subjects instead of animal models, the use of appropriate animal models has recently begun to advance our understanding of the neurobiology of fatigue. In this review, results from animal models using immunological, developmental, or physical approaches to study fatigue are described and compared. Common across these animal models is that fatigue arises when a stimulus induces activation of microglia and/or increased cytokines and chemokines in the brain. Neurobiological studies implicate structures in the ascending arousal system, sleep executive control areas, and areas important in reward. In addition, the suprachiasmatic nucleus clearly plays an important role in homeostatic regulation of the neural network mediating fatigue. This nucleus responds to cytokines, shows decreased amplitude firing rate output in models of fatigue, and responds to exercise, one of our few treatments for fatigue. This is a young field but very important as the symptom of fatigue is common across many disorders and we do not have effective treatments.


Assuntos
Doenças Autoimunes do Sistema Nervoso/fisiopatologia , Síndrome de Fadiga Crônica/fisiopatologia , Fadiga/fisiopatologia , Animais , Encéfalo/anatomia & histologia , Encéfalo/imunologia , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Fadiga/imunologia , Síndrome de Fadiga Crônica/imunologia , Humanos , Neurobiologia/métodos , Neurobiologia/tendências
19.
J Biol Rhythms ; 26(5): 454-63, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21921299

RESUMO

Analysis of circadian oscillations that exhibit variability in period or amplitude can be accomplished through wavelet transforms. Wavelet-based methods can also be used quite effectively to remove trend and noise from time series and to assess the strength of rhythms in different frequency bands, for example, ultradian versus circadian components in an activity record. In this article, we describe how to apply discrete and continuous wavelet transforms to time series of circadian rhythms, illustrated with novel analyses of 2 case studies involving mouse wheel-running activity and oscillations in PER2::LUC bioluminescence from SCN explants.


Assuntos
Ritmo Circadiano/fisiologia , Análise de Ondaletas , Animais , Ciclo Estral/fisiologia , Feminino , Análise de Fourier , Masculino , Camundongos , Atividade Motora , Proteínas Circadianas Period/fisiologia , Núcleo Supraquiasmático/fisiologia
20.
J Undergrad Neurosci Educ ; 10(1): A85-7, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-23626498

RESUMO

The Golgi staining method has a long history in the field of neuroscience, and remains an important teaching tool in undergraduate laboratory settings. The ability to visualize a cell with all the processes makes the method useful when teaching introductory neuroscience courses. However, the amount of time required for post-stain tissue processing makes it a difficult procedure to use when teaching laboratory classes. We detail a modified Golgi-Cox method with a short incubation period and minimal post-stain processing that produces well differentiated cells, making it ideal for use in an undergraduate laboratory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...